Oferty

(4)

Pozostałe oferty od najtańszej

Miniatury matematyczne. 53 Gry
Miniatury matematyczne 53 Gry
Miniatury matematyczne 53 Gry - Zbigniew Bobiński, Piotr Nodzyński, Mirosław Uscki - książka
Miniatury matematyczne 53 Gry

Opis i specyfikacja

Miniatura skierowana do uczniów szkół podstawowych. "Takie pojęcia, jak zabawa czy gra na ogół kojarzone są ze zwykłą rozrywką. Fakt, że u podstaw każdej gry czy zabawy leży umowa, która polega na ustaleniu pewnych reguł, skłonił wielu nauczycieli i ludzi zajmujących się procesem kształcenia do wykorzystania ich w nauczaniu matematyki. Oczywiście gry czy zabawy wykorzystane do tego celu powinny być jedynie środkiem wspierającym i uatrakcyjniającym proces uczenia. Cel na tej drodze jest łatwy do osiągnięcia, ponieważ każda gra czy zabawa wywołuje naturalną, szczególnie u młodszych uczniów, chęć wygrania.

Po każdym okresie prób pojawia się naturalne pytanie, jak najskuteczniej grać, aby osiągnąć sukces. Po kilku dość chaotycznych posunięciach, które często kończą się przegraną, rozpoczyna się poszukiwanie optymalnego sposobu gry, czyli tak zwanej strategii optymalnej lub strategii zwycięskiej. To poszukiwanie związane jest z odkryciem ,,struktury", na której oparta jest ta gra. Ponieważ niniejsza książeczka skierowana jest do nauczycieli i uczniów młodszych klas, zasady gry proponowane do wykorzystania w procesie nauczania nie wykraczają poza podstawowe własności liczb naturalnych czy pojęć geometrycznych. W klasyfikacji gier dokonanych przez Zofię Krygowską są tak zwane gry arytmetyczne.

Jednak głównym celem jest zapoznanie na elementarnym poziomie z dwoma strategiami, czyli sposobami postępowania w trakcie gry, które zapewniają zwycięstwo. Postaraliśmy się wybrać takie przykłady gier, w których strategię zwycięską ma gracz rozpoczynający grę, jak również gry, w których taką strategię ma drugi gracz. Poszukiwanie takiej strategii polega na analizowaniu gry. Jedną z nich nazwaliśmy strategią ,,analizy gry od końca", czyli poszukiwaniu tzw. pozycji zwycięskich.

Drugą z nich nazwaliśmy strategią ,,postępowania symetrycznego" i wyjaśniliśmy ją na przykładach. Niejako celem ubocznym w przedstawionych grach jest ujawnienie podobieństwa strategii, mimo że gry oparte są na wykorzystaniu różnych sytuacji. Na zakończenie, chcemy zwrócić uwagę na istnienie gier, w których żaden z graczy nie ma strategii zwycięskiej i gier zwanych zdeterminowanymi, w których jeden z graczy wygrywa bez względu na sposób postępowania uczestników gry.